Mouse Prostaglandin E Receptor EP₃ Subtype Mediates Calcium Signals via Gi in cDNA-transfected Chinese Hamster Ovary Cells

Atsushi Irie, Eri Segi, Yukihiko Sugimoto, Atsushi Ichikawa, and Manabu Negishi¶

Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan

Received August 27, 1994

Summary: We recently cloned the mouse prostaglandin (PG) E receptor EP₃ subtype that is coupled to adenylate cyclase inhibition through Gi and identified three isoforms which are produced through alternative splicing. In Chinese hamster ovary cells expressing each EP₃ isoform, PGE₂ induced an immediate increase in the intracellular Ca²⁺ concentration ([Ca²⁺]i) due to both Ca²⁺ mobilization from internal stores and influx from the extracellular medium. This increase was abolished by prior treatment with pertussis toxin (PT). PGE₂ also stimulated an accumulation of inositol trisphosphate (IP₃) in a PT-sensitive manner. Both the PGE₂-induced increase in [Ca²⁺]i and accumulation of IP₃ were blocked by the phospholipase C inhibitor U-73122. Thus, EP₃ is linked to phospholipase C activation via Gi, and this activation leads to Ca²⁺ mobilization from internal stores and influx from the extracellular medium.

© 1994 Academic Press, Inc.

Many receptors for hormones, autacoids and neurotransmitters transduce their biological signals via heterotrimeric GTP-binding proteins (G proteins) [1]. Gq-phospholipase C coupling is well-characterized, and Gq is responsible for Ca^{2+} mobilization, resulting from phospholipase C- β activation [2]. In contrast, Gi was initially believed to exclusively mediate inhibition of adenylate cyclase and not to be responsible for Ca^{2+} mobilization. However, recent studies showed that $\beta\gamma$ -subunits of Gi, which is activated by the M_2 muscarinic receptor, stimulate phospholipase C- β 2 [3], suggesting potential participation of Gi in the phospholipase C- Ca^{2+} mobilizing signal.

We have recently cloned the mouse prostaglandin (PG) E receptor EP₃ subtype, and demonstrated that it is a G protein-coupled rhodopsin-type receptor [4]. Furthermore, we identified three isoforms of the EP₃ receptor with different carboxy-terminal tails, EP_{3 α}, EP_{3 β} and EP_{3 γ}, which are produced through alternative splicing,

¶To whom correspondence should be addressed.

Abbreviations: G protein, heterotrimeric GTP-binding protein; PG, prostaglandin; PT, pertussis toxin; CHO, Chinese hamster ovary; [Ca²⁺]i, intracellular Ca²⁺ concentration; IP₃, inositol trisphosphate; IP₄, inositol tetrakisphosphate.

and showed that $EP_{3\alpha}$ and $EP_{3\beta}$ were coupled to inhibition of adenylate cyclase [5], whereas $EP_{3\gamma}$ was coupled to both stimulation and inhibition of adenylate cyclase [6]. EP_3 mediates the diverse physiological actions of PGE_2 , most of which occur through coupling of EP_3 to EP_3 such as contraction of rat myometrium [7], osmotic water flow in rabbit cortical collecting ducts [8], and histamine secretion from the mouse mast cell line EP_3 to EP_3 transfected EP_3 transfected EP_3 transfected EP_3 causes EP_3 transfected EP_3 causes EP_3 transfected EP_3 causes EP_3 release from intracellular stores and the influx from the extracellular medium due to EP_3 coupling.

MATERIALS AND METHODS

Measurement of [Ca²+]i For measurement of intracellular Ca²+ concentration ([Ca²+]i), Chinese hamster ovary cells (CHO-dhfr-) stably expressing each EP₃ isoform [6] were seeded at 4.0 × 10⁴ cells/cm² on coverslips (circular; diameter, 13.2 mm), cultured for 48 h, and then loaded with 5 μM fura-2/AM (Dojindo Laboratories, Kumamoto, Japan) for 60 min at 37°C. The cells were then washed twice with HEPES-buffered saline solution containing 140 mM NaCl, 4.7 mM KCl, 2.2 mM CaCl₂, 1.2 mM MgCl₂, 1.2 mM KH₂PO₄, 11 mM glucose and 15 mM HEPES (pH 7.4). Each coverslip was placed diagonally in a cuvette holder with the cell monolayer facing the excitation beam. The fluorescence intensity was measured at an excitation wavelength of 340 nm or 380 nm and an emission wavelength of 510 nm with a fluorescence spectrophotometer (Jasco, CAF-100), as described previously [10].

Measurement of [3 H]IP $_3$ formation. To measure [3 H]inositol trisphosphate (IP $_3$) formation, the CHO cells expressing each EP $_3$ isoform were seeded at 4.0×10^5 /well in 6-well plates, cultured for 48 h, and then labeled with 1 μCi/ml myo-[2 - 3 H]inositol for 12 h [11]. Cells were washed twice with HEPES-buffered saline and preincubated in 2 ml of HEPES-buffered saline containing 10 mM LiCl for 10 min at 37°C. The solution was aspirated and the reaction was started by adding 2 ml of HEPES-buffered saline containing 10 mM LiCl and 1 μM PGE $_2$. After incubation at 37°C for 10 sec, the medium was quickly aspirated and 1 ml of 10% trichloroacetic acid was added. Measurement of [3 H]IP $_3$ formed was performed essentially as described by Berridge *et al.* [12].

RESULTS AND DISCUSSION

Fig. 1 shows PGE₂-induced [Ca²⁺]i change in EP_{3 α}-expressing CHO cells. In the presence of extracellular Ca²⁺, PGE₂ induced a rapid increase in [Ca²⁺]i from 130 nM to 680 nM within a few seconds and then the level decreased quickly, regaining the basal level within 1 min (Fig. 1A). In Ca²⁺-free medium, the PGE₂-induced [Ca²⁺]i increase was markedly reduced, but was still observed (Fig. 1B), indicating that the PGE₂-induced [Ca²⁺]i increase occurred via two distinct pathways, large extracellular Ca²⁺ influx (Ca²⁺ entry) and small Ca²⁺ release from internal stores (Ca²⁺ mobilization). Pretreatment of the cells with pertussis toxin (PT) at 20 ng/ml

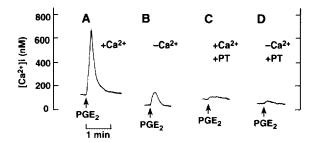


Fig. 1. Effects of PGE₂ on [Ca²⁺]i in cells expressing EP_{3 α}. CHO cells expressing EP_{3 α} were treated without (A and B) or with (C and D) 20 ng/ml PT for 12 h. The cells were loaded with fura-2/AM, and then stimulated with 1 μ M PGE₂ in HEPES-buffered saline (+Ca²⁺) (A and C) or in Ca²⁺-free buffer containing 1 mM EGTA (-Ca²⁺) (B and D). PGE₂ was added at the time indicated by the arrow. The recordings shown are representatives of three independent experiments that yielded similar results.

for 12 h almost abolished both Ca^{2+} mobilization and Ca^{2+} entry (Fig. 1C and 1D), indicating that the PGE₂-induced [Ca²⁺]i change is mediated by a PT-sensitive G protein. PT-sensitive Ca^{2+} entry and Ca^{2+} mobilization were also observed in CHO cells expressing EP_{3 β} or EP_{3 γ} (Table 1), suggesting that each EP₃ isoform exerts Ca^{2+} entry and mobilization via a PT-sensitive G protein.

It has been demonstrated that IP₃ induces Ca²⁺ release from endoplasmic reticulum [13], and that IP₃ or inositol tetrakisphosphate (IP₄) evoked Ca²⁺ influx via Ca²⁺-permeable channels in the plasma membranes of olfactory cells [14, 15], T lymphocytes [16], CHO cells [17], sea urchin eggs [18] and endothelial cells [19]. We then examined whether PGE₂ stimulates IP₃ formation in CHO cells expressing

Table I. Effects of PGE₂ on [Ca²⁺]i in cells expressing each EP₃ isoform. CHO cells expressing each EP₃ isoform were treated with or without 20 ng/ml PT for 12 h. The cells were loaded with fura-2/AM, and then stimulated with 1 μ M PGE₂ in HEPES-buffered saline (+Ca²⁺) or in Ca²⁺-free buffer containing 1 mM EGTA (-Ca²⁺). The Peak [Ca²⁺]i levels induced by PGE₂ were determined as described in "Materials and Methods". Values are the means \pm S.E.M. for three independent experiments.

Treatment	$\Delta[Ca^{2+}]i (nM)$		
	$EP_{3\alpha}$	EP _{3β}	ЕР3ү
None (+Ca ²⁺)	476 ± 61	306 ± 36	402 ± 39
None (-Ca ²⁺)	108 ± 22	125 ± 27	118 ± 24
PT (+Ca ²⁺)	27 ± 4	37 ± 7	37 ± 17
PT (-Ca ²⁺)	17 ± 7	11 ± 3	7 ± 4

Table II. Effects of PGE₂ and U-73122 on [3 H]IP₃ formation in cells expressing each EP₃ isoform. CHO cells expressing each EP₃ isoform were labeled with [3 H]inositol for 12 h. After preincubation with or without 10 μ M U-73122 for 5 min, the cells were stimulated with 1 μ M PGE₂. [3 H]IP₃ at 10 sec after stimulation was determined as described in "Materials and Methods". Values are expressed as percentages of the control and are the means \pm S.E.M. for triplicate experiments. The radioactivity of the control in EP_{3 α}-, EP_{3 β}- and EP_{3 γ}-expressing cells was 897.2 \pm 21.2, 968.8 \pm 9.6 and 646.8 \pm 20.8 dpm/10⁶ cells, respectively.

Addition	[³ H]IP ₃ formation (% of control)		
	EP _{3α}	EP _{3β}	ЕРзү
None	100.0 ± 2.0	100.0 ± 1.0	100.0 ± 2.7
PGE_2	164.9 ± 21.4	149.7 ± 22.2	112.9 ± 5.8
U-73122	96.0 ± 3.9	95.6 ± 2.5	85.5 ± 1.9
U-73122 + PGE ₂	110.3 ± 4.1	116.8 ± 3.2	98.6 ± 8.3

each EP₃ isoform. As shown in Table II, PGE₂ stimulated the accumulation of [³H]IP₃ in the cells expressing each EP₃ isoform. Pretreatment for 5 min with the phospholipase C inhibitor U-73122 [20-22] markedly prevented the accumulation of [³H]IP₃ induced by PGE₂ (Table II). Moreover, pretreatment of the cells with PT also prevented the accumulation of [³H]IP₃ induced by PGE₂ (Table III), suggesting that each EP₃ isoform causes phosphatidylinositol hydrolysis through activation of the PT-sensitive G protein by its coupling to phospholipase C as in the case of M₂ muscarinic receptors [3]. We next examined whether the PGE₂-induced [Ca²+]i increase is the result of activation of phospholipase C. As shown in Table IV, U-73122 abolished the PGE₂-induced [Ca²+]i increase both in the presence and absence

Table III. Effects of PT treatment on PGE₂-induced [3 H]IP₃ formation in cells expressing each EP₃ isoform. CHO cells expressing each EP₃ isoform were labeled with [3 H]inositol in the presence of 20 ng/ml PT for 12 h. The cells were stimulated with 1 μ M PGE₂, and then [3 H]IP₃ at 10 sec after stimulation was determined as described in "Materials and Methods". Values are expressed as percentages of the control and are the means \pm S.E.M. for triplicate experiments. The radioactivity of the control in EP_{3 α}-, EP_{3 β}- and EP_{3 γ}-expressing cells was 767.0 \pm 56.0, 859.9 \pm 29.8 and 371.8 \pm 16.8 dpm/10 6 cells, respectively.

	[3H]IP ₃ formation (% of control)		
Addition	$EP_{3\alpha}$	ЕР3β	ЕР3γ
None	100.0 ± 6.1	100.0 ± 3.2	100.0 ± 3.5
PGE_2	102.7 ± 7.8	108.4 ± 2.7	96.4 ± 2.7

Table IV. Effects of U-73122 on PGE₂-induced increase in $[Ca^2+]i$ in cells expressing each EP₃ isoform. CHO cells expressing each EP₃ isoform were loaded with fura-2/AM. After preincubation with 10 μ M U-73122 for 5 min at 37°C, the cells were stimulated with 1 μ M PGE₂ in HEPES-buffered saline (+Ca²⁺) or in Ca²⁺-free buffer containing 1 mM EGTA (-Ca²⁺). The Peak $[Ca^{2+}]i$ levels induced by PGE₂ were determined as described in "Materials and Methods". Values are the means \pm S.E.M. for three independent experiments.

Addition	$\Delta [Ca^{2+}]i$ (nM)		
	$\overline{EP_{3lpha}}$	EP _{3β}	ЕР3γ
+Ca ²⁺	66 ± 23	33 ± 10	72 ± 16
-Ca ²⁺	20 ± 4	26 ± 7	8 ± 5

of extracellular Ca²⁺, indicating that the EP₃-operated two pathways, Ca²⁺ entry and Ca²⁺ mobilization, are mediated by inositol phosphates. IP₄ as well as IP₃ can evoke Ca²⁺ entry [18, 19]. Since no detectable IP₄ accumulation was observed in PGE₂stimulated cells expressing EP3 (data not shown), and an electrophysiological study showed that CHO cells have no IP₄-dependent Ca²⁺-permeable channels [17], the PGE₂-induced Ca²⁺ entry in EP₃-expressing CHO cells may be mediated by IP₃ rather than by IP4. Thus, EP3 causes the stimulation of phospholipase C through Gi, leading to Ca²⁺ mobilization and Ca²⁺ entry in CHO cells. Recently, substance P receptor, a well known Gq-coupled receptor, has been shown to exert remarkable IP3 accumulation (230% above the control), and cause [Ca²⁺]i increase (Δ[Ca²⁺]i; 330 nM) in the receptor cDNA transfected CHO cells [17]. In contrast to the substance P receptor, Gi-coupled EP3 induces only small amount of IP3 accumulation (13%-65% above the control) (Table II), while it induced remarkable $[Ca^{2+}]i$ increase ($\Delta[Ca^{2+}]i$; 306-476 nM) (Table I), comparable with that induced by the substance P receptor. A small amount of IP3 appears to be sufficient for the Gi-coupled receptor-mediated [Ca²⁺]i increase in CHO cells.

PGE receptors can be pharmacologically divided into three subtypes, EP₁, EP₂ and EP₃, and these are presumed to be coupled to Ca²⁺ mobilization and stimulation and inhibition of adenylate cyclase, respectively [23, 24]. Thus, it is believed that the PGE₂-induced [Ca²⁺]i increase is mediated by EP₁. We recently cloned the cDNA for EP₁, and showed that EP₁ causes extracellular Ca²⁺ entry via a PT-insensitive G protein [25]. However, pharmacological studies showed that PGE₂ induced contraction of the uterus, where EP₃ is abundantly expressed [4], due to [Ca²⁺]i increase in a PT-sensitive manner [7]. In addition, EP₃-selective agonists also induced uterus contraction [26]. Furthermore, it was also reported that PGE₂ produced a prompt increase in [Ca²⁺]i by a mechanism involving Ca²⁺ mobilization and Ca²⁺ entry in rabbit collecting ducts resulting in inhibition of osmotic water flow

[27], suggesting that some PGE₂-induced [Ca²⁺]i increase is mediated by EP₃. Our present study strongly supported that in addition to adenylate cyclase inhibition, EP₃ causes [Ca²⁺]i increase via Gi and mediates some biological actions of PGE₂ such as induction of uterus contraction and inhibition of osmotic water flow in the kidney through this signal transduction pathway. It has been reported that dopaminergic D₂ receptor expressed in the fibroblast cell line Ltk⁻ [28], angiotensin II receptor in the adrenocortical cell line Y1 [29] and luteinizing hormone-releasing hormone receptor in the pituitary cell line GH₃ [30], caused the influx of extracellular Ca²⁺ via a PT-sensitive G protein. The present results clearly demonstrate that EP₃ causes [Ca²⁺]i increase due to Gi-mediated phospholipase C activation. Our present study showed that Gi-phospholipase C coupling is the other important Ca²⁺-signaling pathway in addition to Gq-phospholipase C coupling.

Acknowledgment: This study was supported in part by Grants-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

REFERENCES

- 1. Gilman, A. G. (1987) Ann. Rev. Biochem. 56, 615-649.
- Smrcka, A. V., Hepler, J. R., Brown, K. O., and Sternweis, P. C. (1991) Science 251, 804-807.
- 3. Katz, A., Wu, D., and Simon, M. I. (1992) Nature 360, 686-689.
- 4. Sugimoto, Y., Namba, T., Honda, A., Hayashi, Y., Negishi, M., Ichikawa, A., and Narumiya, S. (1992) J. Biol. Chem. 267, 6463-6466.
- Sugimoto, Y., Negishi, M., Hayashi, Y., Namba, T., Honda, A., Watabe, A., Hirata, M., Narumiya, S., and Ichikawa, A. (1993) J. Biol. Chem. 268, 2712-2718.
- Irie, A., Sugimoto, Y., Namba, T., Harazono, A., Honda, A., Watabe, A., Negishi, M., Narumiya, S., and Ichikawa, A. (1993) Eur. J. Biochem. 217, 313-318
- Goureau, O., Tanfin, Z., Marc, S., and Harbon, S. (1992) Am. J. Physiol. 263, C257-C265.
- Hébert, R. L., Jacobson, H. R., Fredin, D., and Breyer, M. D. (1993) Am. J. Physiol. 265, F643-F650.
- 9. Nishigaki, N., Negishi, M., Sugimoto, Y., Namba, T., Narumiya, S., and Ichikawa, A. (1993) Biochem. Pharmacol. 46, 863-869.
- Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440-3450.
- 11. Negishi, M., Ito, S., and Hayaishi, O. (1990) J. Biol. Chem. 265, 6182-6188.
- 12. Berridge, M. J., Dawson, R. M. C., Downes, C. O., Heslop, J. P., and Irvine, R. F. (1983) Biochem. J. 212, 473-482.
- 13. Berrdge, M. J. (1993) Nature 361, 315-325.
- 14. Kalinoski, D. L., Aldinger, S. B., Boyle, A. G., Huque, T., Marecek, J. F., Prestwich, G. D., and Restrepo, D. (1992) Biochem. J. 281, 449-456.
- 15. Fadool, D.A. and Ache, B. W. (1992) Neuron 9, 907-918.
- Khan, A. A., Steiner, J. P., Klein, M. G., Schneider, M. F., and Snyder, S. H. (1992) Science 257, 815-818.
- 17. Mochizuki-Oda, N., Nakajima, Y., Nakanishi, S., and Ito, S. (1994) J. Biol. Chem. 269, 9651-9658.
- 18. Irvine, R. F., and Moor, R. M. (1986) Bichem. J. 240, 917-920.
- 19. Lückhoff, A., and Clapham, D. E. (1992) Nature 355, 356-358.

- Smith, R. J., Sam, L. M, Justen, J. M., Bundy, G. L., Bala, G. A., and Bleasdale, J. E. (1990) J. Pharmacol. Exp. Ther. 253, 688-697.
- 21. Bleasdale, J. E., Thakur, N. R., Gremban, R. S., Bundy, G. L., Fitzpatrick, F. A., Smith, R. J., and Bunting, S. (1990) J. Pharmacol. Exp. Ther. 255, 756-768.
- 22. Thompson, A. K., Mostafapour, S. P., Denlinger, L. C., Bleasdale, J. E., and Fisher, S. K. (1991) J. Biol. Chem. 266, 23856-23862.
- Coleman, R. A., Kennedy, I., Sheldrick, R. L. G., and Tolowinska, I. Y. (1987) Br. J. Pharmacol. 91, 407P.
- Coleman, R. A., Kennedy, I., Humphrey, P. P. A., Bunce, K., and Lumley, P. (1989) In Comprehensive Medicinal Chemistry Vol. 3 (Emmett, J. C., ed.), pp.643-714, Pergamon Press, Oxford.
- 25. Watabe, A., Sugimoto, Y., Honda, A., Irie, A., Namba, T., Negishi, M., Ito, S., Narumiya, S., and Ichikawa, A. (1993) J. Biol. Chem. 268, 20175-20178.
- Senior, J., Marshall, K., Sangha, R., Baxter, G. S., and Clayton, J. K. (1991) Br. J. Pharmacol. 102, 747-753.
- 27. Hébert, R. L., Jacobson, H. R., and Breyer, M. D. (1991) Prostaglandins Leukotorienes and Essential Fatty Acids 42, 143-148.
- Vallar, L., Muca, C., Magni, M., Albert. P., Bunzow, J., Meldolesi, J., and Civelli, O. (1990) J. Biol. Chem. 265, 10320-10326.
- 29. Hescheler, J., Rosenthal, W., Hinsch, K.-D., Wulfern, M., Trautwein, W. and Schultz, G. (1988) EMBO J. 7, 619-624.
- 30. Rosenthal, W., Henscheler, J., Hinsch, K.-D., Spicher, K., Trautwein, W., and Schultz, G. (1988) EMBO J. 7, 1627-1633.